Prohibitin overexpression improves myocardial function in diabetic cardiomyopathy
نویسندگان
چکیده
Prohibitin (PHB) is a highly conserved protein implicated in various cellular functions including proliferation, apoptosis, tumor suppression, transcription, and mitochondrial protein folding. However, its function in diabetic cardiomyopathy (DCM) is still unclear. In vivo, type 2 diabetic rat model was induced by using a high-fat diet and low-dose streptozotocin. Overexpression of the PHB protein in the model rats was achieved by injecting lentivirus carrying PHB cDNA via the jugular vein. Characteristics of type 2 DCM were evaluated by metabolic tests, echocardiography and histopathology. Rats with DCM showed severe insulin resistance, left ventricular dysfunction, fibrosis and apoptosis. PHB overexpression ameliorated the disease. Cardiofibroblasts (CFs) and H9c2 cardiomyoblasts were used in vitro to investigate the mechanism of PHB in altered function. In CFs treated with HG, PHB overexpression decreased expression of collagen, matrix metalloproteinase activity, and proliferation. In H9c2 cardiomyoblasts, PHB overexpression inhibited apoptosis induced by HG. Furthermore, the increased phosphorylation of extracellular signal-regulated kinase (ERK) 1/2 was significantly decreased and the inhibited phosphorylation of Akt was restored in DCM. Therefore, PHB may be a new therapeutic target for human DCM.
منابع مشابه
Overexpression of the sarcoplasmic reticulum Ca(2+)-ATPase improves myocardial contractility in diabetic cardiomyopathy.
Diabetic cardiomyopathy is characterized by reduced cardiac contractility due to direct changes in heart muscle function independent of vascular disease. An important contributor to contractile dysfunction in the diabetic state is an impaired sarcoplasmic reticulum (SR) function, leading to disturbed intracellular calcium handling. We investigated whether overexpression of the SR calcium pump (...
متن کاملCombination of angiotensin-(1–7) with perindopril is better than single therapy in ameliorating diabetic cardiomyopathy
We recently found that overexpression of angiotensin (Ang)-converting enzyme 2, which metabolizes Ang-II to Ang-(1-7) and Ang-I to Ang-(1-9), may improve left ventricular remodeling in diabetic cardiomyopathy. Here we aimed to test whether chronic infusion of Ang-(1-7) can dose-dependently ameliorate left ventricular remodeling and function in a rat model of diabetic cardiomyopathy and whether ...
متن کاملUpregulation of MG53 induces diabetic cardiomyopathy through transcriptional activation of peroxisome proliferation-activated receptor α.
BACKGROUND Diabetic cardiomyopathy, which contributes to >50% diabetic death, is featured by myocardial lipid accumulation, hypertrophy, fibrosis, and cardiac dysfunction. The mechanism underlying diabetic cardiomyopathy is poorly understood. Recent studies have shown that a striated muscle-specific E3 ligase Mitsugumin 53 (MG53, or TRIM72) constitutes a primary causal factor of systemic insuli...
متن کاملMyocardial Adipose Triglyceride Lipase Overexpression Protects Diabetic Mice From the Development of Lipotoxic Cardiomyopathy
Although diabetic cardiomyopathy is associated with enhanced intramyocardial triacylglycerol (TAG) levels, the role of TAG catabolizing enzymes in this process is unclear. Because the TAG hydrolase, adipose triglyceride lipase (ATGL), regulates baseline cardiac metabolism and function, we examined whether alterations in cardiomyocyte ATGL impact cardiac function during uncontrolled type 1 diabe...
متن کاملCorin overexpression improves cardiac function, heart failure, and survival in mice with dilated cardiomyopathy.
Heart failure, caused by dilated cardiomyopathy and other cardiac disorders such as hypertension, is a major public health problem with high morbidity and mortality. Corin, a cardiac enzyme that cleaves natriuretic peptides, is a promising biomarker of cardiomyopathy and heart failure, but its functional role in these processes is not understood. We evaluated the potential effects of corin in m...
متن کامل